## CHEMISTRY OF FURAN AND THIOPHENE COMPOUNDS I. CHARACTERIZATION OF SECONDARY-TERTIARY $\beta$ -GLYCOLS WITH $\alpha$ -FURYL AND $\alpha$ -THIENYL GROUPS

V. I. Esafov, I. F. Utrobina, N. I. Kiskina, and Yu. B. Tuganov UDC 547.724:542.957.2

 $1-(\alpha$ -Furyl)pentan-1-o1-3-one and  $1-(\alpha$ -thienyl)pentan-1-o1-3-one were synthesized by the reaction of furfural and  $\alpha$ -formylthiophene with methyl ethyl ketone. The products were used to synthesize secondary-tertiary  $\beta$ -glycols with  $\alpha$ -furyl and  $\alpha$ -thienyl groups attached to the secondary carbinol carbon. It was proved that these  $\beta$ -glycols are capable of undergoing hydrolytic cleavage at the C<sub>2</sub>-C<sub>3</sub> bond.

The possibility of the application of ketolization to benzaldehyde was demonstrated in [1], and it was therefore of interest to extend this method to the condensation of furfural and  $\alpha$ -formylthiophene with acetone and methyl ethyl ketone in order to obtain the corresponding  $\beta$ -ketols and use them to synthesize the previously undescribed secondary-tertiary  $\beta$ -glycols (the reaction scheme is given for furan derivatives).



V-X  $R = C_2H_5$ ; VI  $R = n - C_3H_7$ ; VII  $R = n - C_3H_9$ ; VIII  $R = n - C_5H_{11}$ ; IX, XI  $R = C_6H_5$ 

Experiments on the condensation of furfural (I) and  $\alpha$ -formylthiophene (XII) with acetone demonstrated that furfurylideneacetone (II) and  $\alpha$ -thienylideneacetone (XIII) are obtained instead of  $\beta$ -ketols. On the other hand, the condensation of I and XII with methyl ethyl ketone proceeded normally to give  $\beta$ -ketols - 1-( $\alpha$ -furyl)pentan-1-o1-3-one (III) and 1-( $\alpha$ -thienyl)pentan-1-o1-3-one (XIV) - in yields of 68 and 50%, respectively.

The structure of III was confirmed by the presence of an absorption band characteristic for the C=O group  $(1700 \text{ cm}^{-1})$  in its IR spectrum, as well as a band due to intramolecular hydrogen bonding  $(3545 \text{ cm}^{-1})$ .

 $1-(\alpha$ -Furyl)pent-1-en-3-one (IV) and  $1-(\alpha$ -thienyl)pent-1-en-3-one (XV) were obtained when III and XIV were vacuum-distilled at 4 mm with traces of iodine. Secondary-tertiary  $\beta$ -glycols (V-IX and XVI-XX) were synthesized from III and XIV and the appropriate Grignard reagents.

To find out whether these  $\beta$ -glycols retain the capacity for hydrolytic cleavage [2] that is characteristic for secondary-tertiary  $\beta$ -glycols, we performed experiments with 1-( $\alpha$ -furyl)-3-ethylpentane-1,3-diol (V), 1-( $\alpha$ -furyl)-3-phenylpentane-1,3-diol (IX), 1-( $\alpha$ -thienyl)-3-methylpentane-1,3-diol (XVI), and 1-( $\alpha$ thienyl)-3-phenylpentane-1,3-diol (XX). Hydrazones corresponding to diethyl ketone (X), methyl ethyl ketone (XXI), and propiophenone (XI) were isolated by treatment of the hydrolyzates (obtained after heating weighed

A. M. Gor'kii Ural State University, Sverdlovsk. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 295-297, March, 1972. Original article submitted March 22, 1971.

© 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

|                      | но                           | $\begin{array}{c} 17,17\\ 16,17\\ 15,00\\ 15,88\\ 13,82\\ 13,82\\ 13,82\\ 15,88\\ 15,88\\ 15,88\\ 15,88\\ 15,88\\ 12,98\\ 12,98\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Calc. %<br>H                 | 9,09<br>9,73<br>9,73<br>9,73<br>8,71<br>8,71<br>6,87<br>6,87<br>6,87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | 0                            | 66,67<br>66,67<br>67,92<br>69,03<br>70,00<br>73,17<br>73,17<br>73,17<br>73,17<br>73,17<br>73,17<br>63,16<br>61,21<br>61,21<br>63,74<br>68,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| к'<br>†2¢с₂н₅<br>ОН  | HO                           | 12,0<br>12,0<br>12,0<br>15,0<br>15,0<br>15,5<br>15,6<br>15,6<br>15,6<br>15,6<br>15,6<br>15,6<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RCHCH<br>011         | Found, H                     | 7,022<br>8,392<br>7,222<br>8,395<br>7,07<br>7,222<br>8,395<br>7,07<br>7,222<br>8,395<br>7,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Glycols              | с<br>С                       | 66.55<br>67.55<br>69.957<br>59.957<br>59.957<br>59.957<br>69.957<br>69.957<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.325<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.355<br>69.3556<br>69.3556<br>69.3556<br>69.3556<br>69.3556<br>69.3556<br>69.3556<br>69.3556<br>69. |
| nalysis of $\beta$ - | Empiricai<br>formula         | C1H1803<br>C1H2003<br>C1H2003<br>C1H2203<br>C1H1803<br>C1H18025<br>C1H18025<br>C1H18025<br>C1H2025<br>C1H2025<br>C13H20025<br>C13H20025<br>C13H20025<br>C13H20025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| tary A               | calc.                        | 54,56<br>59,17<br>63,79<br>63,79<br>68,41<br>68,41<br>69,43<br>69,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| emen                 | hunoi<br>found               | 54,31<br>58,98<br>63,17<br>68,60<br>68,60<br>64,48<br>69,29<br>69,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ts of El             | n <sub>D</sub> <sup>20</sup> | 1,4930<br>1,4900<br>1,4875<br>1,4840<br>1,4840<br>1,5360<br>1,5340<br>1,5330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ld Result            | d4 <sup>20</sup>             | 1,0594<br>1,0297<br>1,0297<br>1,0009<br>1,1066<br>1,0991<br>1,0667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| al Constants ar      | Bp. °C<br>(pressure, mm)     | $\begin{array}{c} 128-130\\ 128-136\\ 134-136\\ 140-142\\ 140-142\\ 140-1105\\ 148-150\\ 128-129\\ 128-129\\ 141-143\\ 13\\ 145-146\\ 13\\ 156-146\\ 12\\ 156-168\\ 167\\ 5-168\\ 12\\ 156-168\\ 12\\ 156-168\\ 12\\ 156-168\\ 12\\ 12\\ 156-168\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| cochemic             | Ri                           | ֛׆֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֢֕                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1. Physi             | ж                            | Furyl<br>Furyl<br>Turyl<br>Furyl<br>Furyl<br>Fhienyl<br>Thienyl<br>Thienyl<br>Thienyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TABLE                | Com -<br>pound               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

\*Mp, °C.

samples of the  $\beta$ -glycols for 2 h with 0.1 N aqueous H<sub>2</sub>SO<sub>4</sub> at 100°C with 2,4-dinitrophenylhydrazine. This serves as proof of the secondary-tertiary nature of the synthesized  $\beta$ -glycols.

## EXPERIMENTAL

The IR spectra of 0.001 M  $CCl_4$  solutions were recorded with a UR-20 spectrometer. Compounds III, IV, XIV, and XV were identified by thin-layer chromatography on a layer of aluminum oxide-gypsum in a benzene-ethyl acetate system (1:1).

<u>1-( $\alpha$ -Furyl)but-1-en-3-one (II)</u>. The condensation of I with acetone was carried out as in [2]. A solution of 48 g (0.5 mole) of freshly distilled I in 29 g (0.5 mole) of acetone was added with stirring in the course of 6 h to a cooled (to  $-2^{\circ}$  C) solution of 261 g (4.5 mole) of acetone and 362 ml of 1.4% aqueous sodium hydroxide. At the end of the reaction, water was added to the reaction mixture, and the resulting oily layer was separated. The acetone was removed by distillation at 150 mm, and the residue was recrystallized from pentane to give 90% of II with mp 39-39.5°C. The preparation did not depress the melting point of a sample of furfurylideneacetone obtained by the method in [3].

<u>1-( $\alpha$ -Furyl)pentan-1-o1-3-one (III)</u>. A solution of 48 g (0.5 mole) of I in 36 g (0.5 mole) of methyl ethyl ketone was added dropwise with stirring in the course of 6 h to a cooled (-2° C) solution of 324 g (4.5 mole) of methyl ethyl ketone and 400 ml of a 1.4% aqueous sodium hydroxide solution. The mixture was neutralized with a dilute (1:8) acetic acid solution, and finely ground table salt (25 g per 100 ml of water used) was added. The methyl ethyl ketone was removed from the salted-out layer by distillation at 75 mm. The residue – the product of the condensation of I with methyl ethyl ketone – was vacuum-fractionated at 2 mm to give 68.4% of III with bp 100-101°C (2 mm),  $d_4^{20}$  1.1146,  $n_D^{20}$  1.4950, and  $R_f$  0.67. Found: C 64.12; H 7.08; OH 10.0%; M 167; MR<sub>D</sub> 44.00.  $C_9H_{12}O_3$ . Calculated: C 64.34; H 7.14; OH 10.12%; M168; MR<sub>D</sub> 43.80.

 $\frac{1-(\alpha-\text{Furyl})\text{pent-1-en-3-one (IV).}}{100}$  This was obtained by distillation of III with traces of iodine at 4 mm and had bp 100-102°C (4 mm),  $d_4^{20}$  1.0498,  $n_D^{20}$  1.5372, and  $R_f$  0.76. Found:  $MR_D$  44.63, exaltation +2.82.  $C_9H_{10}OF_3$ . Calculated:  $MR_D$  41.81.

 $1-(\alpha$ -Furyl)-3-ethylpentane-1,3-diol (V). An ether solution of 0.25 mole of III was added dropwise to an ether solution of 0.52 mole of ethylmagnesium bromide (cooled to  $-17^{\circ}$  C) in the course of 3 h. The mixture was allowed to stand at room temperature for 12 h. It was then cooled with ice and decomposed, first with water and then with the calculated amount of dilute (1:8) acetic acid. The ether layer was separated, and the aqueous layer was extracted three times with ether. The combined ether extracts were washed with sodium bicarbonate solution and water and dried with potassium carbonate. The ether solution was filtered, the ether was removed by distillation, and the residue was vacuumfractionated at 2 mm. The physicochemical constants and the results of elementary analysis for V are presented in Table 1. Secondary-tertiary  $\beta$ -glycols VI-IX were synthesized from III and the appropriate Grignard reagents under the conditions described above.

<u>1-( $\alpha$ -Thienyl)but-1-en-3-one (XIII)</u>. This was obtained by the reaction of XII [4] with acetone, as in [2], and had mp 32-33°C [5].

 $\frac{1-(\alpha-\text{Thienyl})\text{pentan-1-o1-3-one (XIV)}}{\text{out under the same conditions that were used to obtain III to give 50% of XIV with bp 128-130°C (4 mm), d_4^{20}} 1.1595, n_D^{20}$  1.5390, and  $R_f$  0.65. Found: C 58.42; H 6.57; S 17.17; OH 9.1%; M 183;  $MR_D$  49.71.  $C_9H_{12}O_2S$ . Calculated: C 58.69; H 6.52; S 17.39; OH 9.24%; M 184;  $MR_D$  49.42.

 $\frac{1-(\alpha-\text{Thienyl})\text{pent-1-en-3-one}}{1-(\alpha-\text{Thienyl})\text{pent-1-en-3-one}} (XV). \text{ This compound was obtained by distilling XIV with traces of iodine and had bp 78-80°C (2 mm), <math>d_4^{20}$  1.0194,  $n_D^{20}$  1.5685,  $R_f$  0.75, and an exaltation of +3.36. Found: MR<sub>D</sub> 49.79.  $C_9H_{10}\text{OSF}_3$ . Calculated MR<sub>D</sub> 46.43.

<u>1-( $\alpha$ -Thienyl)-3-methylpentane-1,3-diol (XVI)</u>. This compound was obtained by a method similar to that used to prepare V.

The secondary-tertiary  $\beta$ -glycols (XVI-XX) with an  $\alpha$ -thienyl group were obtained from XIV and the appropriate Grignard reagents by the method indicated for V. The physicochemical constants and results of elementary analysis for XVI-XX are presented in Table 1.

<u>Hydrolytic Cleavage of  $\beta$ -Glycols</u>. Weighed samples of 0.001 mole of V, IX, XVI, or XX were heated for 2 h at 100°C with 50 ml of 0.1 N aqueous H<sub>2</sub>SO<sub>4</sub> in sealed ampuls. A sulfuric acid solution of 2,4-dinitrophenylhydrazine was added to the resulting hydrolyzates. The precipitated hydrazones were removed by filtration and recrystallized from alcohol. Diethyl ketone hydrazone (X) with mp 154-155°C was obtained from V, methyl ethyl ketone hydrazone with mp 113.5-114.5°C (XXI) was obtained from XVI, and propiophenone hydrazone (XI) with mp 189-190°C was obtained from IX and XX.

## LITERATURE CITED

- 1. V. I. Esafov and I. F. Utrobina, Izv. Vuzov, Ser. Khim., 13, 1154 (1970).
- 2. V. I. Esafov and L. P. Zhukova, Zh. Obshch. Khim., 32, 2816 (1962).
- 3. Organic Syntheses [Russian translation], Vol. 1, Inostr. Lit., Moscow (1949), p. 451.
- 4. General Laboratory Course in Organic Chemistry [Russian translation], Mir, Moscow (1965).
- 5. E. Grishkevich-Trakhimovskii and I. Matsurevich, Zh. Russk. Khim. Obshchestva, 44, 570 (1912).